CSC 391/691: GPU Programming Fall 2011

Introduction to GPU Programming
Languages

Copyright © 2011 Samuel S. Cho

Maryland CPU/GPU Cluster Infrastructure

Tiled Display

User Desktops
- @ ® o

o TR

-.-.-"
g AR | pree] i1

-
098 0o g) 0 026 6

Infiniband Network

http://www.umiacs.umd.edu/
research/GPU/facilities.html

Intel’s Response to NVIDIA GPUs

INTERNATIONAL SCIENCE GRID
THIS WEEK

About | Archive | Calendar | Learn | Interact | Press Room

Home = ISGTW - 22 September 2010 = Opinion - GPU-based cheap supercomputing coming to an
end

Feature - GPU-based cheap supercomputing coming to an end

Nvidia’s CUDA has been hailed as
“Supercomputing for the Masses,” and
with good reason - amazing
speedups ranging from 10x through
hundreds have been reported on
scientific / technical code. CUDA has
become a darling of academic
computing and a major plaver in
DARPA's Exascale program, but
performance alone does not account
for that popularity: price clinches the
deal. For all that computing power,
theyre incredibly cheap. As Sharon
Glotzer of UMich noted, "Today you
can get two gigaflops for $500. That is
ridiculous.” It is indeed. And it’s only
possible because CUDA is subsidized
by sinking the fixed costs of its
development into the high volumes of
Nvidia’s mass market low-end GPUs.

graphics & memory ctrl

Unfortunately, that subsidy won't last

forever; its end is now visible. Intel
has now started pounding the
marketing drums on something long
predicted: integration of Intel’s
graphics onto the same die as its next

processor

Intel's Sandy Bridge architecture places the processor and
GPU on the same chip.

Image courtesy Greg Pfister.

generation "Sandy Bridge” processor
chip, due out in mid-2011.

Probably not coincidentally, mid-2011 is when AMD’s Llano processor will see daylight. It
incorporates enough graphics-related processing to be an apparently decent DX11 GPU,
although to my knowledge the architecture hasnt been disclosed in detail.

Just prior to this Fall’s IDF (Intel Developer Forum), Anandtech received an early demo
part of Sandy Bridge and checked out the graphics, among other things. Their net is that

To Accelerate Or Not To Accelerate

® Pro:

® They make your code
run faster.

e Cons:

When is GPUs appropriate?

® Applications
® Traditional GPU Applications: Gaming, image processing

® i.e,manipulating image pixels, oftentimes the same operation on
each pixel

® Scientific and Engineering Problems: physical modeling, matrix
algebra, sorting, etc.

® Data parallel algorithms:
® |arge data arrays
® Single Instruction, Multiple Data (SIMD) parallelism

® Floating point computations

Parallel Hardware Landscape:
Instruction and Data Streams

® Flynn’s Classification: Hardware dimensions
of memory and control

Data Streams

Single Multiple

SISD: SIMD:
Intel Pentium 4 GPUs

. Single
Instruction

Streams

MISD: MIMD:
No Examples Today |Intel Nalhelm

Multiple

Single Instruction, Multiple Data (SIMD)

Example Instruction:

AT = ALTLT+;

Element-wise operations on vectors or
matrices of data.

Multiple processors: All processors
execute the same set of instructions at
the same time

° Each with data at a different address
location.

Advantages:

° Simplifies synchronization

° Reduces instruction control
hardware; One program, many results.

Works best for highly data-parallel
applications (e.g., matrix operations,
monte carlo calculations)

CPU vs. GPU Hardware Design Philosophies

A

 Bf Bf Bf 8] Af 8]] 8

Dual socket, AMD
2.3 GHz 12-core

NVIDIA Tesla S2050

Peak DP FLOPs

220.8 GFLOPs DP

2060.8 GFLOPs DP (9.3x)

Peak SP FLOPS

441.6 GFLOPs SP

4121.6 GFLOPs SP (9.3x)

Peak RAM BW

25 GB/sec

576 GB/sec (23x)

Peak PCle BW

N/A

16 GB/sec

Needs x86 server to
attach to?

No

Yes

Power/Heat

~900 W +~400 W (~2.9x)

Code portable?

No (CUDA)
Yes (PGI, OpenCL)

CUDA-capable GPU Hardware Architecture

Processors execute computing threads

Thread execution managers issues threads

|28 thread processors grouped into |6
streaming multiprocessors (SMs)

Parallel Data Cache enables thread
cooperation.

Host

Input Assembler

Thread Execution Manager

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

Trocurs [J§ oo Yoo FE | Tvocurs i rentae FEJ|Erosurs i rosurs FEJf T rocors [

CUDA-capable GPU Hardware Architecture

Processors execute computing threads

Thread execution managers issues threads

|28 thread processors grouped into |6
streaming multiprocessors (SMs)

Parallel Data Cache enables thread
cooperation.

Host

Input Assembler

Thread Execution Manager

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

Trocurs [J§ oo Yoo FE | Tvocurs i rentae FEJ|Erosurs i rosurs FEJf T rocors [

&N
IR

Single Instruction, Multiple Threads (SIMT)

A version of SIMD used in
GPUs.

GPUs use a thread model to
achieve a high parallel
performance and hide memory
latency.

On a GPU, 10,000s of threads
are mapped on to available
processors that all execute the
same set of instructions (on
different data addresses).

Is it hard to program on a GPU?

® |n the olden days — (pre-2006) — programming GPUs meant either:

® using a graphics standard like OpenGL (which is mostly meant for
rendering), or

® getting fairly deep into the graphics rendering pipeline.

® To use a GPU to do general purpose number crunching, you had to make
your number crunching pretend to be graphics.

® This is hard.Why bother?

How to Program on a GPU Today

Proprietary programming language or extensions
e NVIDIA: CUDA (C/C++)

e AMD/ATI: StreamSDK/Brook+ (C/C++)

OpenCL (Open Computing Language): an industry standard for doing
number crunching on GPUs.

Portland Group Inc (PGI) Fortran and C compilers with accelerator
directives; PGl CUDA Fortran (Fortran 90 equivalent of NVIDIA’s CUDA C).

OpenMP version 4.0 may include directives for accelerators.

