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Maryland CPU/GPU Cluster Infrastructure

http://www.umiacs.umd.edu/
research/GPU/facilities.html 



Intel’s Response to NVIDIA GPUs



To Accelerate Or Not To Accelerate

• Pro: 

• They make your code 
run faster.

• Cons: 

• They’re expensive.

• They’re hard to program.

• Your code may not be 
cross-platform.



When is GPUs appropriate?

• Applications

• Traditional GPU Applications: Gaming, image processing

• i.e., manipulating image pixels, oftentimes the same operation on 
each pixel

• Scientific and Engineering Problems: physical modeling, matrix 
algebra, sorting, etc.

• Data parallel algorithms:

• Large data arrays

• Single Instruction, Multiple Data (SIMD) parallelism

• Floating point computations



Parallel Hardware Landscape: 
Instruction and Data Streams

• Flynn’s Classification: Hardware dimensions 
of memory and control
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Single Instruction, Multiple Data (SIMD)

• Element-wise operations on vectors or 
matrices of data.

• Multiple processors:  All processors 
execute the same set of instructions at 
the same time

• Each with data at a different address 
location.

• Advantages:

• Simplifies synchronization

• Reduces instruction control 
hardware; One program, many results.

• Works best for highly data-parallel 
applications (e.g., matrix operations, 
monte carlo calculations)
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Example Instruction:
A[i][j] = A[i][j]++;



CPU vs. GPU Hardware Design Philosophies
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CUDA-capable GPU Hardware Architecture
• Processors execute computing threads

• Thread execution managers issues threads

• 128 thread processors grouped into 16 
streaming multiprocessors (SMs)

• Parallel Data Cache enables thread 
cooperation.
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Single Instruction, Multiple Threads (SIMT)

• A version of SIMD used in 
GPUs.

• GPUs use a thread model to 
achieve a high parallel 
performance and hide memory 
latency.

• On a GPU, 10,000s of threads 
are mapped on to available 
processors that all execute the 
same set of instructions (on 
different data addresses).
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Is it hard to program on a GPU?

• In the olden days – (pre-2006) – programming GPUs meant either:

• using a graphics standard like OpenGL (which is mostly meant for 
rendering), or

• getting fairly deep into the graphics rendering pipeline.

• To use a GPU to do general purpose number crunching, you had to make 
your number crunching pretend to be graphics.

• This is hard. Why bother?



How to Program on a GPU Today

• Proprietary programming language or extensions

• NVIDIA: CUDA (C/C++)

• AMD/ATI: StreamSDK/Brook+ (C/C++)

• OpenCL (Open Computing Language): an industry standard for doing 
number crunching on GPUs.

• Portland Group Inc (PGI) Fortran and C compilers with accelerator 
directives; PGI CUDA Fortran (Fortran 90 equivalent of NVIDIA’s CUDA C).

• OpenMP version 4.0 may include directives for accelerators.


