
Introduction to GPU Programming
Languages

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Maryland CPU/GPU Cluster Infrastructure

http://www.umiacs.umd.edu/
research/GPU/facilities.html

Intel’s Response to NVIDIA GPUs

To Accelerate Or Not To Accelerate

• Pro:

• They make your code
run faster.

• Cons:

• They’re expensive.

• They’re hard to program.

• Your code may not be
cross-platform.

When is GPUs appropriate?

• Applications

• Traditional GPU Applications: Gaming, image processing

• i.e., manipulating image pixels, oftentimes the same operation on
each pixel

• Scientific and Engineering Problems: physical modeling, matrix
algebra, sorting, etc.

• Data parallel algorithms:

• Large data arrays

• Single Instruction, Multiple Data (SIMD) parallelism

• Floating point computations

Parallel Hardware Landscape:
Instruction and Data Streams

• Flynn’s Classification: Hardware dimensions
of memory and control

Data StreamsData Streams

Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD:
GPUsInstruction

Streams
Multiple MISD:

No Examples Today
MIMD:
Intel Nalhelm

Single Instruction, Multiple Data (SIMD)

• Element-wise operations on vectors or
matrices of data.

• Multiple processors: All processors
execute the same set of instructions at
the same time

• Each with data at a different address
location.

• Advantages:

• Simplifies synchronization

• Reduces instruction control
hardware; One program, many results.

• Works best for highly data-parallel
applications (e.g., matrix operations,
monte carlo calculations)

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Example Instruction:
A[i][j] = A[i][j]++;

CPU vs. GPU Hardware Design Philosophies

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

GPU

CPU

CUDA-capable GPU Hardware Architecture
• Processors execute computing threads

• Thread execution managers issues threads

• 128 thread processors grouped into 16
streaming multiprocessors (SMs)

• Parallel Data Cache enables thread
cooperation.

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

GPU

CPU

...

GPU

CPU

CUDA-capable GPU Hardware Architecture
• Processors execute computing threads

• Thread execution managers issues threads

• 128 thread processors grouped into 16
streaming multiprocessors (SMs)

• Parallel Data Cache enables thread
cooperation.

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

GPU

CPU

...

Single Instruction, Multiple Threads (SIMT)

• A version of SIMD used in
GPUs.

• GPUs use a thread model to
achieve a high parallel
performance and hide memory
latency.

• On a GPU, 10,000s of threads
are mapped on to available
processors that all execute the
same set of instructions (on
different data addresses).

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Is it hard to program on a GPU?

• In the olden days – (pre-2006) – programming GPUs meant either:

• using a graphics standard like OpenGL (which is mostly meant for
rendering), or

• getting fairly deep into the graphics rendering pipeline.

• To use a GPU to do general purpose number crunching, you had to make
your number crunching pretend to be graphics.

• This is hard. Why bother?

How to Program on a GPU Today

• Proprietary programming language or extensions

• NVIDIA: CUDA (C/C++)

• AMD/ATI: StreamSDK/Brook+ (C/C++)

• OpenCL (Open Computing Language): an industry standard for doing
number crunching on GPUs.

• Portland Group Inc (PGI) Fortran and C compilers with accelerator
directives; PGI CUDA Fortran (Fortran 90 equivalent of NVIDIA’s CUDA C).

• OpenMP version 4.0 may include directives for accelerators.

